

Overcoming the Barriers to Lightweighting by Enabling Low-Cost and High-Performance Structural Automotive Aluminum Castings

AASHISH ROHATGI, Tarang Mungole, Jens Darsell, Mert Efe aashish.rohatgi@pnnl.gov Pacific Northwest National Laboratory (PNNL)

DAVID WEISS david.weiss@eckindustries.com

Eck Industries

National Laboratory Impact Initiative

June 2, 2020

Project ID # mat158

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

> Start: August 2018

> Finish: Oct. 2020

% complete (time): ~70%

Budget

Total project funding

• DOE: \$250K

Industrial cost share: \$250K

Future funds anticipated: \$0

Technology Gaps/Barriers

- High cost of "primary" aluminum (Al) casting alloys
- Poor mechanical properties of "secondary" Al casting alloys
- Lack of high-strength/highelongation casting alloys using low-cost casting processes

Partners

Eck Industries

Relevance/Objective

- Aluminum content in light-duty vehicles
 - Current: 400 lbs. Al/vehicle; ~73% castings
 - Near future: ~500 lbs. Al/vehicle by 2025
- Challenges for greater Al usage
 - Higher cost of "primary" Al casting alloys
 - Poor mechanical properties of "secondary" Al castings
- > Project scope
 - Heat-treatment techniques to lower processing cost of castings
 - Molten Al processing technique to enhance mechanical properties of "secondary" Al casting alloys
- LightMAT's resources (at PNNL)
 - Proprietary heat-treatment techniques
 - Ultrasonic-based molten metal processing

Knuckles

Brake Calipers

Approach

Heat-treatment Development

- A206 Al alloy: 4.6% copper (Cu) 0.35% manganese (Mn) 0.25% magnesium (Mg) 0.22% titanium (Ti)
- > PNNL proprietary
- Goal: Shorten solution/aging

Molten Al Process Development

- A356 Al alloy: 6.5–7.5% silicon (Si), 0.25–0.45% Mg, iron (Fe)...
 - 0.2% Fe ("primary alloy")
 - 0.6% Fe ("secondary alloy")
- Ultrasonic melt processing
- Goal: Refine the microstructure for finer intermetallics and lower dendrite arm spacing to improve ductility and more uniform properties throughout the casting

Task/Milestone Summary

M1 (03/19): Set up an ultrasonic system for use in conjunction with molten alloys - Achieved

M2 (07/19): Compare hardness and microstructure of A206 following the baseline and the alternate heat-treatment performed for the same duration - Achieved

M3 (10/19): Compare microstructures of A356 cast with and without ultrasonic processing - Achieved

Accomplishments (Heat-treatment) Baseline Property Measurement (FY2019)

Time (Hrs)

12

14

16

18

- Maximum age-hardening after 12 hours of solutionizing
- Dissolution of Al₂Cu precipitates during solutionizing

100 µm

Accomplishments (Heat-treatment) PNNL Heat Treatment vs. Baseline

450°C Baseline as-quenched: 4 HRB 450°C PNNL as-quenched: 11 HRB

- 450°C-1 Hr. (Baseline/Conventional)
 - No solutionization (very low hardness) → Hardness does not increase after T7 treatment
- 450°C-1 Hr. (PNNL)
 - Some solutionization → Hardness increase from 11 HRB to 25 HRB after T7 treatment
 - Longer solutionization at 450°C by PNNL technique may increase T7 hardness to that achieved by solutionization at T > 500 °C
- 500°C (PNNL) vs. 510°C (Baseline/Conventional)
 - Similar age-hardening efficacy relative to each other, but lower efficacy than the baseline 12 hr. solutionization

Accomplishments (Heat-treatment) Scale-up Trials

- Modified setup and conducted mock-up trials to physically accommodate full-length as-cast tension bars
- Performed trial runs to determine heating behavior of long bars vs. currently used small cylindrical samples
- Guidance for implementing the heat-treatment process to the commercial, large-sized castings

Accomplishments (Melt Processing) Setup for Ultrasonic Processing (FY2019)

System is fully functional

Accomplishments (Melt Processing) Process Parameters

	Ultrasonication	Ultrasonic Intensity (W/cm²)	Duration of Treatment (s)	Total Energy Input (J)
Low Fe (0.2 wt%)	Control	0	0	0
	25% Amp – 20W	15	120	2400
	40% Amp – 50W	38		6000
High Fe (0.4 wt%)	Control	0	0	0
	25% Amp – 20W	15	120	2400
	40% Amp – 50W	38		6000

- Samples were processed at two power settings and durations
- Low-Fe: Fabricated samples for microstructural characterizations
- High-Fe: Fabricated samples for microstructural and tensile testing

Accomplishments (Melt Processing) Low-Fe A356 – Microstructures

250 μm

- Performed SEM imaging of low-Fe samples and image analysis to quantify dendrite size and intermetallic circularity
- Suppression of needle-like detrimental β-AIFeSi phase
- Intermetallics with Chinese script morphologies are observed, which are beneficial for ductility [Tash et al., MSEA, 2007]

Accomplishments (Melt Processing) Low-Fe A356 – Dendrite and Intermetallic Refinement

- Slight refinement of Al dendrites after high-power u/sonication
- Slight coarsening in intermetallic sizes
- Greater uniformity (smaller scatter bar) after high-power u/sonication

Significantly blunt (i.e., high radius of curvature) intermetallic particles after high-power ultrasonication

Responses to Previous Year's Reviewers' Comments

No reviewer comments

Collaboration and Coordination

Eck Industries

- Supplier to automotive OEMs and Tier-1
- CRADA between PNNL and Eck
- Al alloys supplied by Eck
 - A206 as-cast tensile samples for heat treatment
 - Primary A356 ingot with "low" Fe% and A356 with "high" Fe% to mimic secondary alloy
- Baseline heat treatments
- Tensile testing of ultrasonicated samples and heat-treated bars

Remaining Challenges and Barriers

- Optimize heat-treatment parameters for A206 AI to increase its T7 hardness from current levels
- Stretch goal: Demonstrate tensile property improvements in heattreated tensile bars

Potential equipment limitation for heating long-bar geometry samples

- Demonstrate intermetallic size refinement and associated improvement in tensile strength and ductility in ultrasonicated high-Fe A356
- Techno-economic feasibility of these techniques, though outside the scope of this work, needs to be addressed, such as:
 - Throughput (e.g., number of parts per run; lbs. molten metal per run)
 - Investment in new equipment vs. existing equipment

Proposed Future Work

- A206: Complete heat-treatment runs with optimized process parameters
 - Measure hardness and tensile stress—strain curve (ductility)
- A356: Complete melt processing of low- and high-Fe samples
 - Measure tensile stress–strain curves (ductility)
 - Ultrasonic processing in semi-solid state and/or at higher ultrasonic power
- Microstructural characterization
 - A206: Dissolution of Cu-containing phases during solutionization
 - A356: Morphology and size/size distribution of Fe-containing brittle intermetallic phases in high-Fe samples

Any proposed future work is subject to change based on funding levels

Summary

- Although opportunities exist to enable greater use of Al castings for automotive lightweighting, greater cost of primary alloy and poor properties of secondary alloys are a hinderance
- > PNNL heat-treatment process (for A206 AI) shows the potential of being an energy-efficient alternative to the conventional heat treatment
- ➤ Ultrasonic melt-treatment processing of A356 AI shows slight refinement of dendrite size and blunting of intermetallics without any significant size change → Potential to improve ductility of secondary 356 AI

